Block Runge-Kutta methods for periodic initial-value problems
نویسندگان
چکیده
منابع مشابه
Block Runge-Kutta Methods for the Numerical Integration of Initial Value Problems in Ordinary Differential Equations
Block Runge-Kutta formulae suitable for the approximate numerical integration of initial value problems for first order systems of ordinary differential equations are derived. Considered in detail are the problems of varying both order and stepsize automatically. This leads to a class of variable order block explicit Runge-Kutta formulae for the integration of nonstiff problems and a class of v...
متن کاملRunge-Kutta Pairs for Scalar Autonomous Initial Value Problems
We present the equations of condition up to sixth order for Runge-Kutta (RK) methods, when integrating scalar autonomous problems. Two RK pairs of orders 5(4) are derived. The first at a cost of only five stages per step, while the other having an extremely small principal truncation error. Numerical tests show the superiority of the new pairs over traditional ones.
متن کاملRunge-Kutta(5,5) Methods for Robot Arm & Initial Value Problem
An ultimate aim of this present paper is to solve application problem such as robot arm and initial value problems by applying Runge-Kutta fifth order five stage numerical techniques. The calculated output for robot arm coincides with exact solution which is found to be better, suitable and feasible for solving real time problems.
متن کاملZero-Dissipative Explicit Runge-Kutta Method for Periodic Initial Value Problems
Abstract—In this paper zero-dissipative explicit Runge-Kutta method is derived for solving second-order ordinary differential equations with periodical solutions. The phase-lag and dissipation properties for Runge-Kutta (RK) method are also discussed. The new method has algebraic order three with dissipation of order infinity. The numerical results for the new method are compared with existing ...
متن کاملAvoiding the order reduction of Runge-Kutta methods for linear initial boundary value problems
A new strategy to avoid the order reduction of Runge-Kutta methods when integrating linear, autonomous, nonhomogeneous initial boundary value problems is presented. The solution is decomposed into two parts. One of them can be computed directly in terms of the data and the other satisfies an initial value problem without any order reduction. A numerical illustration is given. This idea applies ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1996
ISSN: 0898-1221
DOI: 10.1016/0898-1221(95)00183-y